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The three-dimensional problem of the involvement of a plane absolutely rigid inclusion of specified mass in the field of a harmonic 
wave propagating in an infinite elastic body is considered by means of integral equations with a singularity of the Helmholtz 
potential. A boundary-element algorithm is proposed for constructing a discrete analogue of the equations, taking into account 
the fact that the solutions belong to a class of functions which increase on the contour of the integration region (the region of 
the defect). The dependence of the displacements of the inclusions as a rigid whole and also the stress concentration in its 
neighbourhood on the wave number is investigated for two cases of the diffraction by a disc-shaped inclusion of a plane longitudinal 
wave with a wave front that is parallel and perpendicular to it. 0 2003 Elsevier Science Ltd. All rights reserved. 

In addition to cracks, thin foreign inclusions are objects around which stress concentrations occur, for 
which the ideas of their stress intensity factors have been introduced [l], which are important from the 
point of view of fracture mechanics. However, although the dynamic problems of the crack theory have 
been considered in numerous publications [2-61, inertial effects in elastic bodies with thin inclusions 
have been investigated to a much lesser extent and are concerned with two-dimensional formulations 
of the problems for tunnel defects [7,8]. Only scalar problems of the dynamic interaction of an absolutely 
rigid disc with an acoustic medium have been considered in a three-dimensional formulation [9]. 

1. REDUCTION OF THE PROBLEM TO BOUNDARY 
INTEGRAL EQUATIONS 

Suppose an infinite isotropic elastic body (a matrix) contains a plane absolutely rigid inclusion of mass 
M, which occupies a region S in the xlOxz plane. A system of coordinates OX+~X~ is introduced in such 
a way that the centre 0 coincides with the centre of mass of the defect, while the values x3 = 20 
correspond to the demarcation surfaces S’ of the inclusion and the body. A stress-strain state is excited 
by an incident harmonic wave with a specified distribution ,of the ,displacements Uln(x*, t) = 
@(x*)exp(iot) in the space x*(x1, x2, x3) and in time t, where uzn($, ur, u;“) is their amplitude and 
o is the cyclic frequency of the oscillations. 

Starting from the superposition principle and omitting the exponential time factor, which is common 
for quantities of the steady process, the complete diffraction field of the displacements uD in the body 
with the inclusion can be represented in the form 

UD(X*) = ui”(xl) + u(x’) (1.1) 

Here u(uI, u2, u3) are the unknown displacements of the waves reflected from the inclusion, which satisfy 
the radiation conditions at infinity. The key equation for the components of relation (1.1) is the LamC 
equation of harmonic oscillations [lo] 

or2 v (V .“)-co;* v x(V xu)+u=O (1.2) 

where V is the three-dimensional Nabla vector, oi = o/ci (j = 1,2) are wave numbers, and cl and c2 
are the propagation velocities of longitudinal and transverse waves in the body. 
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The properties of the inclusion as a rigid body, the motion of which can only be translational with a 
small displacement u”(& ui, u$ of its centre of mass and rotational around the coordinate axes with 
a small angle of rotation C&(&J,, Q2, Qs), are modelled by the boundary conditions. Hence, we obtain 
the conditions of continuity of the displacements in the region S, where, component-by-component 

Uj(X)=-Ur(X)+U9--3Xj-j, j=l,2; U3(X)=--U~(X)+U30-n*Xl+52rX* (1.3) 

x(x,,+) = x*(x,,x*m E s 

The response of the body to the presence in it of an inclusion is defined by the principal vector of the 
forces acting on the defect with projections Pi(j = 1, 2, 3) and the moments of these forces Zj(j = 1, 
2,3) about the coordinate axes. Additional relations, which connect the quantities P/, Zj and ~7, Q follow 
from the well-known equations of the steady oscillations of the inclusion (ii is the radius of inertia of 
the inclusion about the OXj axis) 

q + Mo2uq = 0, Zj + MW2i,T&2j = 0; j = 1,2,3 (1.4) 

In order to give an integral representation of the solution of problem (1.2)-(1.4) we will use 
Somigliana’s formula in the form [ll] 

Uj(X*)= $ jj [Pi(s)U~(S-x*>-Uj(Y~j(~-X’)ld~~, j=1,2,3 (1.5) 
i=l s+“s- 

where U,(iJ = 1,2,3) are the elements of the matrix of the fundamental solutions of the steady dynamic 
problem of the theory of elasticity in displacements [lo], Tti (i,j = 1,2, 3) are the forces on the areas 
with normals to the surfaces S’, corresponding to these solutions, andpi (i = 1,2,3) are the projections 
of the unknown forces acting on the body from the side of the inclusion. 

The following equalities for the fundamental solutions are obvious 

Then, by introducing notation for the jumps in the stress components ~73 at the point where the defect 
is located 

do,(x) = - -$O~~-CT~]=$[pilg+ +pil,-]Y j=L2,3, X(X~PX:!)ES 

oit,(x) = x,lyJi3(x*) 

relations (1.5) are converted to the following form (everywhere henceforth, unless otherwise stated, 
the integration is carried out over the region S) 

uj(X*)=4~~ IIA~,(~~.~,(~-x*)~SS, j = 1,2,3 
i=l 

or, taking into account the explicit expressions for the functions lirj 

(1.8) 

(1.9) 

Here G is the shear modulus and ] x* - 5 ] is the distance between the point x+(x1, x2, x3) and the point 
of integration k(ci, Q. 

Hence, the displacements at an arbitrary point of the body with the inclusion can be represented by 
the convolutions (1.9) of the jumps in the stresses in the area of the defect with regular kernels of the 



Oscillations of a plane absolutely rigid inclusion in a 3-D elastic body by the BEM 819 

Helmholtz potentials. Using relations (1.4) and (1.7) in terms of the functions Acrj (i = 1,2, 3) we can 
also write the displacements and the rotations of the inclusion as a rigid whole, namely 

(1.10) 

To determine the jumps in the stresses Aoi (i = 1, 2, 3) we will use conditions (1.3). By satisfying 
these conditions using representations (1.9) and (l.lO), we obtain the following system of boundary 
integral equations of the Helmholtz potential type in terms of the functions Aoi 

jjA~&Pdx,WSF; = -o;Gu$(x), x(x1,x2) ES (1.11) 

I([Aaj(5)Rj(X,y+Aa,-j(S)Rjc3-j,(x,gIdSZ =-u:Gu~(x), j = 192, x(x,,x~)E s 

The kernels R, (j = 1,2,3), RI2 and Rzl, after carrying out the differentiation operations, take the form 

Rj(xIB=&(IX-51)- 

Cxj -Sj)* 

,x-5,2 rzw-w 

R,(x~5)=4@-51)- J$E(l+y+y) 

R,,(x ~=_(~~-5~)(X2-52)~(~x-~of4LG~ix~ 
v ’ 

b-51* c,2M it ’ 
i,j=1,2, i# j (1.12) 

The first equation of system (1.11) corresponds to the problem of the transverse oscillations of the 
inclusion in an elastic body (from this we can determine the function Ao3, and then from formulae (1.10) 
we can determine the displacement ui and the rotations Q, and a,). The system of two remaining 
equations corresponds to the problem of the longitudinal oscillations of the inclusion (from these we 
can determine the functions Ao, and Aoz and then the displacements LL~ and L$ and the rotation Q,). 
The kernels of the boundary integral equation contain a polar singularity, which can be separated using 
integrals of the Newton (static) potential type by an identical transformation of system (1.11) to the 
form 

+B =-Gujy(x), j=l,2, x(x,,x~)ES 
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where 

A=Y2+l, 8-Y2-l 
2 

, y*~~~~ 
2 Cl 2(1 -v> 

and v is Poisson’s ratio. The last integrals on the left-hand sides of Eqs (1.13) are regular, which can 
be shown by expanding the exponential functions occurring in the kernels Rj and R, in series in the 
quantities ] x - 5 1. Note that the characteristic part of (1.13) forms an integral operator of the equations 
of the three-dimensional static problem of a laminate with an absolutely rigid inclusion in an infinite 
elastic body [12]. 

2. THE CONSTRUCTION OF A DISCRETE ANALOGUE OF THE 
BOUNDARY INTEGRAL EQUATION 

According to well-known results [12,13], in the case of a disc-shaped inclusion of radius a, the continuity 
of the displacements in the neighbourhood of its edge will be ensured if the function Aoj is represented 
as 

where oj(x) (j = 1, 2, 3) are unknown functions. Substituting expressions (2.1) into relation (1.11) or 
(1.13), we obtain integral equations which, in addition to a polar singularity at the point 5 = x, has a 
root singularity on the contour of the region of integration. To avoid having to change to a polar system 
of coordinates, we will first use the following interpretation of the particular integrals in the region S 

jj~GF---- dse =n*a(x)+jj[a(S)-a(x)+- 
A,(~43 4(x,&) 

(2.2) 

A;(x,~,=&*-+5; Ix-&I’, i=1,3 

Here we have taken into account the exact values of the integrals 

II (2.3) 

It follows from obvious considerations that the integrands on the right-hand sides of (2.2) are bounded 
at the point 5 = x, and hence numerical integration in the corresponding integrals was carried out along 
the region So, which is formed from S by removing a small neighbourhood of this point. 

The next step in regularizing the boundary integral equations consists of changing the variables 

x, = a sin y, cos y2, x2 = a sin yI sin y2 

5, =asinq,cosq2. t2 =asinq,sinq2 

(2.4) 

where y (yt, y?) and -rt (nl, Q) are new variables, which vary in the rectangular region SC0 < yl, 
TJ~ c rc/2; 0 < y2, q2 d 2x). By making the replacement (2.4) we eliminate the singularity on the contour 
of the region of integration, when ql = 7c/2. By combining relations (2.1), (2.2) and (2.4) we obtain a 
regular representation of boundary integral equations (1.11) (or (1.13)) in the form 
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Here 

+ B~3-j(Y)ljy(Y,Ill)sin”rl*dS, +‘jj [5j(l)kj(Y,1) + 
$1 K2 so 

+ cr,_j(rl)~jc~-j,(y,rl)]sin~,~~~ = -GiiF(y), j = L2, Y(yt,y2) E S 

R(y,q)=[sin2 yl +sin2 nl -2sinyt sinrh cos(y2 -Q)l’ 

@j(Y* rl) - 
I --[6,i(sinyl cosy, -sit~rhcosrt~)~ +6,j(siny1 siny2 -sinrh sin7)2j21 

R3(yd 

WY9l-l) l = -(sin y, cos y2 - sin qI cos rt2)(sin yI sin yz - sin Ih sin rlz) 
R’(YJI) 

(2.5) 

8~ is the KLroncker delta, K = ozu is the normalized wave number, so is the representation of the region 
so when replacement_(2.4) is made (in the region so the points y and q do not coincide), and i$, 67, 
Rj (j = 1, 2, 3) RI*, RI2 are complex functions, introduced as 

ttj(y) = ai( ii:(y) = u?(i) (2.6) 

R,(Y,~)=a3Rj(i.5), ~~(Y,‘l)=a3R,(i,i) 
II 

i = x(asiny, cosy2,asiny, siny,), e= 5(asinrh cosrt2,asinfl, sinn2) 

The discretization of Eqs (2.5) is based on uniJorm subdivision of the region s by a grid Q of 

rectangular elements i,, where q = 1, . . . . Q, ,? =qgl s,, s, tl iP = 0, q fp and the approximation of 

the required functions aj (j = 1, 2, 3) by interpolation polynomials 

&j(Y)= 2 ejqeq(Y>v j= 1,2,3 
q=l 

(2.7) 

Here 6iiq = ai is the value of the required function at the nodal point yq(ytq, yG) in the middle of 
the qth element and 8, (q = 1, . . ., Q) are weighting functions with the properties 8, (yJ = 6, . 

Using a collocation scheme to satisfy Eqs (2.5) we arrive at the following systems of linear a P gebraic 
equations of dimension Q x Q for the problem of the transverse oscillations of an inclusion, and of 
dimension 2Q x 2Q for the problem of the longitudinal oscillations of an inclusion with respect to the - 
quantities CXjq 

5 h3iqc3q =-Gi$(y,), i=l,...,Q w3) 
q=l 

5 [hjiqtijq +h,o_j,iq~c3-j,qI=-Gllj”(yi), i=l,...,Q, j=1,2 
q=l 

The coefficients hjlq, hj(j-j)iq have the form 

hj(3-j)iq = jj [lo ( )h. _’ (Yivl$+B~@y(Yi911) sinrll$; K2 4 q I(3 I) 1 j=l,2 S\S, (2.9) 
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After determining the nodal values of the functions ai (j = 1, 2, 3) from systems (2.8) we can easily 
obtain all the most important parameters of the oscillatory process concerning both the stress-strain 
state of the body (relations (1.9) (2.1) and (2.6)) and the motion of the inclusion as a rigid whole 
(relations (1.10) (2.1) and (2.6)). The stress intensity factors of the break K1, of the transverse shear 
K2 and the longitudinal shear K3 in the neighbourhood of the inclusion are of particular interest. These 
are given, as functions of the angular coordinate cp of the point of its contour, by the formulae 

K,(cp) =-274=&W, K*((p) = -27cJ;17a[ol,(f;)coscp+a,(j)sincp] (2.10) 

K~(cp)=-2K~[~,(~)sincp-~(2(~)~~~cp]; i=y(rr/2,cp) 

3. NUMERICAL RESULTS 

Consider the response of a body with a disc-shaped absolutely rigid inclusion to the propagation of a 
plane longitudinal displacement wave 

uin(x*) = eU, exp[io,(e.x*)] (3.1) 

where U0 is the constant amplitude of the oscillations, e = e(sin w, 0, cos w) and \~r is the angle of incidence 
of the wave on the inclusion. 

If the exciting wave propagates along the Ox3 axis, that is, it has a wave front parallel to the inclusion 
(r+~ = 0), the components of its displacements in the region S take the form 

u;” Q;” = 0, u;“(x) = u, 

If the exciting wave propagates along the Oxi axis, i.e. it has a wave front perpendicular to the inclusion 
(v = rc/2), the corresponding components take the form 

up(x) = U, exp(iw,x,), u$ =+o 

In the calculations we used discretization of the region S into 176 elements (11 elements along the 
Oyi axis and 16 elements along the Qyz axis), and also a piecewise-constant approximation of the required 
functions, specified by the relations 

e,(Y) = 

i 

1, if y 6 S, 
0, if y fz S, (3.2) 

Fig. I 
0 2 K 4 

Fig. 2 
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Poisson’s ratio was assumed to be equal to 0.3, and for the configuration of the inclusion considered 
i, = i2 = a/2, i3 = al&f. 

In Figs 1 and 2 we show graphs of the relative amplitudes of the translational displacements of the 
inclusion as a rigid whole ;,a = 1 ~$1 /Ua against the normalized wave number K = 02a. Figures 3-5 show 
similar graphs of the relative amplitudes of the stress intensity factor Ej = IKjl/K*, where K, = 
271@k,,G. Curves l-4 correspond to the following values of the reduced masses of the inclusion 

K 

0.: 

0.1 

0 2 K 

Fig. 5 
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a = M/(pa3) (p is the density of the matrix): 1, 3, 10 and 20. Figures 1 and 3 correspond to the case 
when \~r = 0, in which case uy = ui = 0, Qr = Q2 = Sz, = 0, K2 = K3 = 0, and the stress intensity factor 
of the breakKr does not vary along the contour of the defect. Figures 2,4 and 5 correspond to the case 
when w = n//2, in which case LL~ = ui = 0, Q, = S& = Szs = 0, K1 = 0, and the shear stress intensity 
factors Kz and K3 depend on the angular coordinate cp of the point of the contour of the defect, measured 
from the Ox, axis. Hence, in Fig. 4 we show zz at the most representative points of the contour of the 
inclusion: the continuous curves correspond to the point where the wave encounters the defect 
(cp = ?r), and the d as e h d curves correspond to the point where the wave leaves the defect (cp = 0). Since 
K3(0) = Ks(n) = 0, in Fig. 5 we show values of K3 at an intermediate point of the contour with coordinate 
cp = n/2. 

It follows from Fig. 1 that for normal incidence of the wave on the inclusion, as the wave number 
increases the amplitude of the displacements Ci increases from unity when K = 0 (the static valuej to 
an absolute maximum, and then decreases monotonically to zero. This behaviour, which is more 
pronounced for inclusions of large mass, shifts into the region of lower wave numbers when the absolute 
maximxm of Ci increases. In the initial range of wave numbers the amplitude of the stress intensity 
factor Kr gradually increases from a zero value (Fig. 3). A further increase in K in the case of an inclusion 
of large mass leads to a local maximum of K r . For higher wave numbers, a characteristic feature is the 
convergen_ce of the valuesKr for inclusions of different mass, subsequently reaching a linear relationship 
between K, and K, which agrees with the power increase in the stresses in the generating wave. 

A similar behaviour (with a difference in the quantitative factors) is observed for tangential incidence 
of the wave on the inclusion, for amplitudes of the longitudinal displacements G:’ (Fig. 2) the amplitudes 
of the transverse-shear stress intensity factor FZ at the point of incidence of the wave (Fig. 4) and the 
amplitudes of the longitudinal-shear stress intensity factor %!s (Fig. - 5). Absolute maxima of K2 are - 
recorded at the point where the wave descends (Fig. 4), where K?(n) > K?(O). There is a difference in 
the nature of the convergence of the stress intensity factors in the region of high wave numbers: whereas 
for K3 (as also for K1 in the previous case) as the mass of the inclusion increases this convergence is 
from above, for K2 it is from below. 

This research was supported by the State Foundation for Basic Research of the Ukraine (01.07.00133). 
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